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Summary. The calculation of electronically excited states with the internally 
contracted multiconfiguration-reference configuration interaction (CMRCI)  
method is discussed. A straightforward method, in which contracted functions 
for all states are included in the basis, is shown to be very accurate and stable 
even in cases of narrow avoided crossings. However, the expense strongly 
increases with the number of states. A new method is proposed, which employs 
different contracted basis sets for each state, and in which eigensolutions of  the 
Hamiltonian are found using an approximate projection operator technique. The 
computational effort for this method scales only linearly with the number of 
states. The two methods are compared for various applications. 
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1 Introduction 

Today, the multiconfiguration-reference configuration interaction method [ 1-13] 
(MRCI) is considered to be one of  the most accurate approximations used in 
quantum chemistry. The main advantage of this method is that it is not restricted 
to specific choices of  the zeroth order wavefunction and can therefore be used to 
compute potential energy functions and other molecular properties for ground 
and excited electronic states and for any nuclear geometry. A particularly 
efficient variant is the internally contracted MRCI method [8-13]. In this 
method the number of  variational parameters is strongly reduced by contracting 
subsets of the CSFs with fixed coefficients. For  a given basis set, the number of  
variational parameters only depends on the number of  correlated orbitals in the 
reference wavefunction, and is independent of the number of reference configura- 
tions which are constructed from this orbital set. It has been demonstrated 
[11, 13-15] that in most cases this contraction leads to only very small errors. 

The price one has to pay for the reduction of the number of  variational 
parameters is the complicated structure of the contracted N-electron basis 
functions. In the direct CI procedure, this complicates the evaluation of  the 
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residual vector g = H • c. However, we have recently developed very efficient new 
techniques [11, 12] which now enable us to perform internally contracted MRCI 
calculations with very large reference spaees and very large basis sets. Some of our 
previous calculations [ 11, 13-15] included more than 3000 reference configurations 
and basis sets of more than 200 orbitals. 

A particular difficulty with the internally contracted MRCI method is the 
calculation of exeited states. Since the contracted configurations depend on the 
expansion coefficients of the reference configurations, different contracted configu- 
ration sets are required for each state. Therefore, if several states are computed 
simultaneously in a straightforward manner as outlined in Sect. 2, the number of 
external pair functions which must be included increases linearly in the number of 
states. This leads to a quadratic to cubic dependence of the computational effort on 
the number of states and reduces or even eliminates the advantage of the internally 
contracted MRCI method. However, in Sect. 3, we present a new approximate 
method for which the effort depends only linearly on the number of states. The 
efficiency and accuracy of this method will be demonstrated in Sect. 4. 

2 Internally eontraeted MRCI for excited states 

In the standard uncontracted MRCI method, the N particle basis set depends only 
on the structure of the reference space and not directly on the reference 
wavefunction ~0. In the calculation of excited states, one typically uses the same 
reference space for all states of interest, and so in turn the same basis of 
configurations is used in the CI calculation, with the first, second, t h i r d , . . ,  state 
wavefunctions appearing as the first, second, t h i rd , . . ,  eigensolutions of the 
common Hamiltonian matrix. MacDonald's theorem [16] holds, and gives some 
justification to the calculation of excitation properties (transition moments and 
excitation energies) from the resulting wavefunctions. For the case of the internally 
contracted M RCI wavefunction [8-11], however, the situation is somewhat more 
complicated. In this case the configurations for state n are generated by applying 
two-electron excitation operators to the corresponding MCSCF reference function 

~~"~ = F~ a~~~ù. (1) 0 
R 

(n) In the following we use the short-hand notation In > = 7/o . In our present approach 
only the configurations with two electrons in the external orbital space are internally 
contracted, while the internal configurations Oz and the singly external configura- 
tion OS are standard configuration state functions [11, 12]. The internal configu- 
ration space {Of} includes the reference space {OR }. The internally contracted 
configurations are defined as: 

~ijp.nab __= (ÊaiÊbj _.]_ pÊbiÊaj) ]n ) (i >>.j internal, a ~>b external, p = _+1), (2) 

where Ê~i are the usual one-electron excitation operators: 

Ê~~ = tl:trl~ + tl#J rl#~ . (3) 

For a given internal orbital space, the number of contracted configurations ~qb up,n 

is independent of the number of reference configurations. However, the functions 
ab ~üp.- depend on the numerical values of the reference coefficients a(~ ), and so are 

inherently specific to the one particular stare n which is well approximated by the 
reference wavefunction ~ õ .  A straightforward method, which has been in routine 
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use since the development of  the internally contracted CI approach [8], is to use 
a basis which is the union of all contracted configurations formed from separate 
reference functions for each state up to, and including, the state k of interest. The 
wavefunction then takes the form: 

k 

[l'~ i j p , m J a b  ' ~  i j p ,m  (4 )  
I S a m = 1 i ~ j  p ab  

with 

[t'~(n) 1 -- (n) 
ù « i j p , m J a b - - p [ C i j p , m ] b a  ( P  = i l ) .  (5) 

In general, the functions aó q'ijp,m are not orthonormal and may be linearly 
dependent. In order to orthonormalize them and to eliminate redundant func- 
tions, we need their overlap matrix: 

ab c d  ~ 1 <CBijp,m[~k,q,n> ~6pq(6ac6b«+6a,~6bc)(<m]Êik,jt]n>+p<m]Êa,jk[n>), (6) 

which is obtained in terms of the elements of  the second-order reduced transition 
density matrices of the reference wavefunctions. Similarly, the coupling co- 
efficients needed to compute Hamiltonian matrix elements between the con- 
tracted functions are transition density matrices up to order four. For  details we 
refer to Ref. [ 11]. 

If  one is interested in the kth state, then the first k eigensolutions of  the 
Hamiltonian matrix in this compound contracted basis must be computed. We 
have found this approach to be rather robust, giving potential energy and 
property surfaces which are nearly identical to those obtainable from uncon- 
tracted calculations, even in cases with strongly interacting states as LiF (X and 
A states) and CN (X and B states) (cf. Sect. 4). The main disadvantage of  the 
approach is its cost. To a fair approximation, the size of  the basis increases 
linearly with the number of states k, and there is usually no additional Hamilto- 
nian sparsity associated with the increase in basis size. The cost of computing the 
pair-pair interactions then scales as k 2, and the effort for the interactions of  the 
pair functions with the singly external functions kg~, which often dominates the 
whole calculation, scales as k. Since the number of times the action of Hamilto- 
nian on a trial vector is required for diagonalization also scales linearly with the 
number of  eigenvalues required, the cost of the whole calculation scales as k 2 to 
k 3. This becomes a serious consideration when one is interested in four or five 
stares of a given symmetry. 

3 A projeetion method for excited states 

The unfavourable scaling of effort with the number of  states discussed in Sect. 2 
could be avoided if it were possible to calculate one state at a time, and to use 
a contracted basis generated from one appropriate reference function (usually, 
for the kth state, the kth eigensolution of the Hamiltonian in the reference 
space). The excited state eigenvector can be found by solving in each iteration of 
the direct CI procedure a smaller eigenvalue problem for a wavefunction of  the 
form 

1 2 
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where 

~ù,~,+~ ~~»-; j~.  (8) 
S a i>~j p ab 

are external expansion functions, which are obtained in subsequent iterations )~. 
Note that these functions are specific to state n, since only contracted functions 
for this stare are included. For the kth state, usually the lowest k eigensolutions 
~(n), n = 1, k are calculated, and then the root which is most similar in character 
to the reference state is selected. The external expansion functions Ag~(~ n) and the 
corresponding residuals H A ~(~~) are finally linearly combined using the appropri- 
ate expansion coefficient Œ(~"). Then, as usual, the next expansion vector is found 
by first order perturbation theory. 

However, there are two significant and distinct problems which can arise in 
such an approach. Firstly, we recognise that valence correlation energies are of 
the same order of magnitude as, and offen larger than, electronic excitation 
energies. Since the contracted configurations for the kth stare correlate the lower 
stares poorly, this has the effect that as iterative diagonalization proceeds, the 
desired root, for example for the first excited state, switches from being the second 
lowest to the lowest root of the reduced eigenvalue problem. This root flipping 
offen causes a completely non-physical mixing of ground and excited states as weil 
as introducing convergence problems. The second, more severe, problem that can 
occur is in situations of near degeneracy, where the reference stares might have 
an incorrect energy ordering. Such a situation occurs, for instance, for a part of 
the potential energy curves for LiF, where the MCSCF predicts the ionic-covalent 
crossing at rauch too short a bond length. In these circumstances, even ground 
stare calculations in a contracted basis built from the ground reference state only 
give very poor results. However, with a compound contracted basis constructed 
from two reference stares one obtains very accurate results even in the region of 
the avoided crossing. 

The root flipping problem discussed above can be avoided by the following 
new procedure. We suggest to diagonalise a modified Hamiltonian matrix in which 
the required state appears as the lowest root, with the lower eigensolutions shifted 
away. For the kth state, we define a projection matrix: 

k - - 1  

p(k) = 1 - ~ ,  c(")c (~)* (9) 
n = l  

and the corresponding projected Hamiltonian matrix: 

H (k) = P(k )Hp(k ) .  (10) 

In the above, c (n) represents the eigenvector for the nth state, i.e., the lowest 
eigenvector of H ~n), and so we proceed through a sequence of calculations, finding 
in turn the lowest eigensolutions of H (1) ~ H, H (2) . . . .  , H (k). The computational 
effort is clearly linear in k. 

If  H were the full CI Hamiltonian matiix, then this sequence would be exactly 
equivalent to finding the lowest k eigensolutions of the Schrödinger equation with 
p(k) being an exact projection operator whose only effect is to shift the lower k - 1 
eigenvalues to zero. In the context of contracted CI calculations, the basis used 
for each state is different, and direct construction of the full projector becomes 
difficult. It is, however, perfectly feasible to form an approximate projector, where 
only such configurations are included in the c (n) vector in Eq. (9) which lie in the 
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configuration set for both the nth and kth state calculations. As noted in Sect. 
2, in our implementation of the internally contracted MRCI, we use a basis of  
uncontracted CSFs ~bz for the internal part of  the wavefunction, and so it is 
natural to restrict the projector to include only internal CSFs which are common 
to the nth and kth stare bases. For  a properly designed calculation, the internal 
space should represent the dominant part of the wavefunction, and so the 
approximate projection operators should be effective in shifting away the un- 
wanted lower roots of the Hamiltonian. Since the projection operator does not 
extend over the singly and doubly external configurations, the additional matrix 
elements require trivial computational effort. 

However, because the projector is only approximate, it is no longer true that 
the lowest eigenvalue of H (k) is the exact kth eigenvalue of H; not even 
MacDonald's theorem holds, and one must interpret the cornputed excited state 
properties with some caution. A remedy for this problem is described below. 

In a slightly different context, it has been shown [ 17] that when CI wavefunc- 
tions are obtained in different bases for different states, much more reliable 
transition properties are obtained by constructing final wavefunctions which are 
those linear combinations of the (non-orthogonal) wavefunctions which bring the 
Hamiltonian between themselves into diagonal form. We have implemented this 
approach in our contracted CI program. After solving for the lowest eigenvector 
o f H  (n~, we form all Hmn = (~<~~l~ql ~~r/(m)), Sm n : (~/(n)[ ~.t(m)) (m ~< n), in what is 
effectively n - 1 further iterations of the CI procedure. Note that the procedures 
used for calculating Hamiltonian matrix elements have to allow for the possibility 
that bra and ket wavefunctions are in different linear spaces. After the calculation 
of all k state wavefunctions, the k x k Hamiltonian matrix is diagonalised. In fact, 
this is a non-orthogonal eigenvalue problem. The final states are linear combina- 
tions of  those obtained in the approximate projector calculation. Properties are 
also easily obtained as linear transformations of the property matrix elements 
computed between the original states. We found that in most cases this procedure 
gives almost identical results to the computationally more demanding multi-state 
procedure described in Sect. 2. Some examples are presented in Sect. 4. 

4 Applications 

As a first example, we discuss some calculations for the two lowest 22; + states of 
the CN radical. Results of a calculation in which the basis for both states 
included the union of  all contracted pair functions generated from two CASSCF 
reference states are shown in the first column of Table 1. Using separate 
contracted basis sets for each stare with the projection technique suggested in 
Sect. 3, we obtain the results in the second column of Table l. We see significant 
differences between both calculations, particularly in the dipole moments. This 
can be understood in that the two approximate wavefunctions are not orthogo- 
nal and there is a sizeable remaining Hamiltonian interaction between them, as 
also shown in Table 1. After solving the 2 x 2 eigenvalue problem in the basis of 
these wavefunctions and transforming the properties correspondingly, we obtain 
the values in the third column of  Table 1. These results are seen to come very 
close to those from the more expensive two-state basis calculation, in particular 
for the dipole moments. 

In Table 2, we present results of calculations for the first four lA' states of  
HCO +. The calculation was performed near the ground state equilibrium 
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Table 1. Comparison of excited state calculations (a) for CN, X2Z +, B2S + 

Two-state basis One-state basis One-state basis 
(projected) (transformed) 

E x -92.571955 -92.571667 -92.571673 
E B -92.458143 -92.457763 -92.457758 
dE/eV 3.0970 3.0995 3.0998 
< ~ ß l / t l ~ x >  0.0 -0.009049 0.0 
< ~ » [ ~ x >  0.0 0.000106 0.0 
gx -0.5631 -0.5725 -0.5632 
#B 0.5372 0.5473 0.5381 
#Bx 0.6914 0.6898 0.6972 

R = 2.1 bohr. Basis: [5s4p3d2flg] valence quadruple zeta correlation consistent 
basis set of Dunning [20]; method see text 

Table 2. Comparison of CI calculations a for the lowest four lA' states of HCO + 

Two-state Three-state Four-state Projected & 
basis basis basis transformed 

E1 b - 113.322323 - 113.322600 - 113.322860 - 113.322021 
E 2 -- 113.057684 - 113.058049 -- 113.058350 - 113.056935 
E 3 - 113.006982 -- 113.007325 -- 113.005364 
E 4 - 112.885245 - 112.882904 
AEI2 ° 7.212 7.199 7.198 7.213 
AE13 8.588 8.586 8.617 
AE14 11.908 11.949 
#1 ä 1.6666 1.6655 1.6638 1.6647 
~2 1.9572 1.9540 1.9523 t.9519 
B3 1.8219 1.8234 1.8202 
#4 1.7863 1.7952 
#12 0.2548 0.2568 0.2572 0.2583 
#13 0.1269 0.1269 0.1318 
#14 0.6343 0.6139 

a Geometry: R c n =  1.08/~, Rco = 1.198 Ä, HCO = 119.5 ° 
Basis set: [4s3p2dlf] (C, O), [3s2pld] (H) valence triple zeta correlation consistent functions of 
Dunning [201. For methods used, see text 
b State energies in hartrees 
c Excitation energies in eV 
d Expeetation and transition dipole moments in atomic units 

g e o m e t r y  o f  H C O  u s i n g  a v a l e n c e  t r ip l e  ze t a  ba s i s  set.  M o l e c u l a r  o r b i t a l s  w e r e  
d e t e r m i n e d  t h r o u g h  a C A S S C F  c a l c u l a t i o n ,  w i t h  t h e  o r b i t a l s  3 a ' - 8 a ' ,  
l a " - 2 a "  ac t ive .  T h i s  C A S  e x p a n s i o n  w a s  a l so  u s e d  as t he  r e f e r e n c e  s p a c e  fo r  
t he  c o n t r a c t e d  M R C I  c o m p u t a t i o n s ,  in  w h i c h  t h e  t e n  v a l e n c e  e l e c t r o n s  we re  
c o r r e l a t e d .  T h e  c a l c u l a t i o n s  w e r e  p e r f o r m e d  u s i n g  t h e  n e w  a p p r o a c h ,  as  wei l  as  
w i t h  ful l  two ,  t h r e e  a n d  f o u r  s t a t e  bases .  W e  o b s e r v e  t h a t  t he  e x c i t a t i o n  ene rg i e s  
a n d  d i p o l e  p r o p e r t i e s  o b t a i n e d  w i t h  t he  p r o j e c t i o n  & t r a n s f o r m a t i o n  m e t h o d  a r e  
e x t r e m e l y  c lose  to  t h o s e  f r o m  t he  ful l  m u l t i s t a t e  c a l c u l a t i o n s ,  w i t h  s i gn i f i c an t l y  
r e d u c e d  c o m p u t a t i o n a l  e f for t ;  t o  o b t a i n  t he  r e su l t s  f o r  al l  f o u r  s t a t e s  u s i n g  t h e  
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new method requires 1541 seconds of  CRAY-XMP CPU time, whilst the full 
four state calculation used 5253 sec, with increased memory requirements also. 

It might be expected that our method gives less accurate results near avoided 
crossings, where electron correlation may significantly change the mixing of  the 
states. As an example for such a case we present some calculations for the lowest 
two 217 and 2S + states of A1C1 +. The two 2/'/ states form an avoided crossing at 
short internuclear distances. In a diabatic picture, the two stares involved can be 
characterized as AI÷+C1 - ("ionic") and AI÷C1 ("neutral"). The change of  the 
electronic structure in the region of the avoided crossing is reflected by strong 
variations of the electric dipole moments and the electronic transition moment. 
Figure 1 shows the potential energy functions of  both states, computed both with 
the two-state basis and the new projection method. On the scale of this figure, 
the differences of the potentials obtained with both methods can hardly be 
detected. Figures 2 and 3 show the same comparison for the dipole and 
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Fig. 1. Calculated potential energy functions for the lowest two 2/-1 (a)  and  2• + (5) states of A1C1 +. 
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visible on this scale 
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Fig. 3. Calculated transition moment 
functions for the lowest two 2// and 2Z + 
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calculation with projection and 
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t rans i t ion  m o m e n t  functions.  Again ,  the differences between the more  accura te  
two-s ta te  ca lcula t ion  and  the pro jec ted  calcula t ions  are extremely small.  A more  
comple te  p resen ta t ion  o f  our  calcula t ions  for  A1C1 + and  A1F + can be found  in 
Ref. [ 18]. 

A n o t h e r  example  is shown in Fig.  4 for  the symmetr ic  s t re tching potent ia l s  
(D~h) of  the lowest  two 1//u and 3IIu states o f  CO z. Aga in  these states fo rm 
na r row avo ided  crossings,  but  this t ime one state has Rydbe rg  and one state has 
valence character .  F o r  mos t  geometries ,  we have only used the pro jec ted  m e t h o d  
with subsequent  solut ion o f  the 2 x 2 eigenvalue p rob lem.  F igure  4 shows a 
compar i son  o f  the (non-va r i a t iona l )  pro jec ted  results  wi th  the va r i a t iona l  results 
ob ta ined  in the final d iagona l iza t ion .  The  energy differences are found  to be very 
small  for  all cons idered  geometries.  A t  one geomet ry  (R = 2.4 bohr )  in the region 
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Table 3. Comparison of MRCI calculations a for the lowest two l/itù states of CO 2 

103 

Method E x/a.u. E2/a.u.  AE/eV 

Projected - 187.855614 - 187.836616 0.517 
Projected & transformed - 187.855686 - 187.836543 0.521 
Two-state - 187.855752 - 187.836848 0.514 

a Doch ' R = 2.4 bohr. Basis set: 13s,9p,3d, lf, 70 reference CSFs. For details see Rel. 
[191 

of the avoided crossing, we have compared the results from a calculation with a 
two-state basis with the projected and transformed results. These data are 
presented in Table 3. It is seen that the energy differences between the two-state 
and the projected & transformed cases are less than 0.1 mH for the lower state 
and 0.3 mH for the upper state. For  more details of these calculations we refer 
to Ref. [19]. 

These examples clearly demonstrate that our new method is efficient and 
accurate in many different situations. Nevertheless, it cannot be excluded that 
under certain circumstances the one-state basis N-electron basis sets used are 
inappropriate, in particular in the region of  avoided crossings. This can be 
detected by consideration of  the mixing coefficients in the final CI in the basis of 
the projected wavefunctions. If there are strong mixings, it is recommended to 
perform the more accurate but more expensive calculations in a composite 
multi-state N-electron basis set. 
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